
993

Smart Cheaters Do Prosper:
Defeating Trust and Reputation Systems

Reid Kerr
David R. Cheriton School of Computer Science

University of Waterloo
Waterloo, Ontario, Canada

rckerr@cs.uwaterloo.com

Robin Cohen
David R. Cheriton School of Computer Science

University of Waterloo
Waterloo, Ontario, Canada

rcohen@ai.uwaterloo.com

ABSTRACT
Traders in electronic marketplaces may behave dishonestly, cheat-
ing other agents. A multitude of trust and reputation systems have
been proposed to try to cope with the problem of cheating. These
systems are often evaluated by measuring their performance against
simple agents that cheat randomly. Unfortunately, these systems
are not often evaluated from the perspective of security—can a mo-
tivated attacker defeat the protection? Previously, it was argued
that existing systems may suffer from vulnerabilities that permit
effective, profitable cheating despite the use of the system. In this
work, we experimentally substantiate the presence of these vulner-
abilities by successfully implementing and testing a number of such
‘attacks’, which consist only of sequences of sales (honest and dis-
honest) that can be executed in the system. This investigation also
reveals two new, previously-unnoted cheating techniques. Our suc-
cess in executing these attacks compellingly makes a key point:
security must be a central design goal for developers of trust and
reputation systems.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence-
Multiagent Systems

General Terms
Experimentation, Security

Keywords
Trust and reputation, electronic marketplaces

1. INTRODUCTION
In the field of multiagent systems, the success of an agent may

depend on its ability to choose reliable partners; for this reason,
trust and reputation systems have received significant attention from
researchers. A particular focus has been on the electronic mar-
ketplace scenario, a well-established and important example of a
multiagent system. In this setting, agents act as traders, buying
and selling amongst one another. The ability to find trustworthy
partners is critical to an agent’s success, because an untrustwor-
thy agent may deliver an inferior good (or fail to deliver at all), or

Cite as: Smart Cheaters Do Prosper: Defeating Trust and Reputation Sys-
tems, R. Kerr, R. Cohen, Proc. of 8th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS 2009), Decker, Sichman, Sierra and Castel-
franchi (eds.), May, 10–15, 2009, Budapest, Hungary, pp. XXX-XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

may not pay for goods purchased. The nature of electronic mar-
ketplaces complicates the evaluation of trustworthiness: identity is
difficult to establish (because new accounts can be created easily),
agents might not engage in repeated transactions together (because
of the size of the market and the diversity of products), and one
agent might have an advantage over another during a transaction
(for example, when a buyer must pay in full before a seller ships
the good (or not)). A variety of approaches have been proposed
to cope with these difficulties; these approaches are outlined in the
next section.

The fundamental motivation for work on trust and reputation
systems (TRSes)1 is the understanding that some individuals may
be dishonest. Typical proposals seek to provide some measure of
protection for market participants against such dishonest traders—
most frequently, the proposals attempt to predict to what degree an
agent will be honest in the future. Work in this area often adopts a
limited perspective, however. While it is assumed that agents may
attempt to exploit each other, little consideration is given to the
possibility that the agents may attempt to exploit the system itself.
In fact, existing systems commonly suffer from vulnerabilities—
weaknesses that may allow an unscrupulous trader to undermine or
bypass the protection offered by the system.2 Kerr and Cohen [4]
present a catalogue of such vulnerabilities. Additionally, they sur-
vey a number of TRSes, claiming multiple vulnerabilities in each.
Vulnerabilities in a TRS may allow an agent to cheat other users
without the system preventing it, or may allow cheating without
penalizing the agent after the fact. In either case, such vulnerabili-
ties represent fundamental breaches in the protection offered by the
system.

Kerr and Cohen [5] contend that security is a critical issue for
designers of trust and reputation systems—if vulnerabilities exist
that allow agents to achieve increased profit by cheating, we should
expect profit-maximizing agents to take advantage of them. Nev-
ertheless, this issue seems to have received little attention in the
trust community. This is borne out, for example, in the simulations
typically used by authors to evaluate their proposals. For example,
many proposals are validated using simulations (e.g., [7, 8, 10])
populated by random selections of agents that behave consistently,
or by agents whose cheating is governed by simple probability dis-
tributions, where each time step is independent of previous ones.

1For convenience, we use the abbreviation TRS, for
‘Trust/Reputation System’, in reference to both trust systems
and reputation systems.
2We wish to be clear about our notion of ‘attacks’. In this work, we
do not refer to conventional attacks on the system implementation
itself (for example, breaching the computer running a TRS, and
modifying the software.) Rather, we refer only to attacks composed
of actions within the system itself (for example, carefully-chosen
combinations of honest and dishonest transactions.)

Cite as: Smart Cheaters Do Prosper: Defeating Trust and Reputation
Systems, Reid Kerr, Robin Cohen, Proc. of 8th Int. Conf. on Autono-
mous Agents and Multiagent Systems (AAMAS 2009), Decker, Sichman,
Sierra and Castelfranchi (eds.), May, 10–15, 2009, Budapest, Hungary,
pp. 993–1000
Copyright © 2009, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org), All rights reserved.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

994

In this work, we examine the issue of security of TRSes, by de-
veloping agents that purposefully employ cheating tactics. We ex-
perimentally substantiate the practicality of attacks on vulnerabili-
ties by successfully using them against a number of existing TRS
proposals. This process provides insight into the nature and degree
of the danger presented by each. Further, this process results in the
identification of two new, closely related cheating tactics: prolifer-
ation and countermeasures, where large numbers of offers can be
used to unfairly gain sales and interfere with the operation of trust
systems. Importantly, we demonstrate that these agents can cheat
successfully without knowledge of the specific TRS in use, or even
the general nature of the system. This undermines the notion of
‘security by obscurity’ for TRSes: ignorance of the system does
not prevent an agent from cheating successfully. While central in
illuminating the issue of security for TRSes, we also expect this
research to be useful in the evaluation of future systems.

2. RELATED WORK

2.1 The Security of TRSes
Kerr and Cohen [4] identified the theoretical possibility of a num-

ber of vulnerabilities in TRSes.
Reputation Lag: A common policy in many electronic market-

places is that the buyer pays before the seller ships the good. In this
scenario, a seller is likely to know that he intends to cheat from the
moment he receives payment. The buyer, however, will not know
for some time afterward, because of processing, shipping time, etc.
Under some TRSes, this presents an opportunity for a seller: he can
cheat a virtually unlimited number of times before his reputation is
updated to warn buyers of the new cheating activity.

Value Imbalance: In some TRSes, all reviews are weighted
equally, regardless of the value of the transactions. This presents
an opportunity: a seller can honestly execute small sales, then use
the reputation gained to cheat on very large ones.

Re-entry: It is broadly accepted that in electronic marketplaces,
we cannot assume that the identities of traders can be established.
Users can create new accounts freely; in large markets, it is in-
feasible to verify the identity of every trader. This presents the
opportunity for a dishonest trader to shed his bad reputation, start-
ing fresh by opening a new account. This is particularly dangerous
in systems that treat unknown sellers as preferable to disreputable
ones.

Initial Window: In some TRSes, buyers rely only on their own
experience in evaluating sellers. Once a buyer has found trustwor-
thy sellers, this policy works well. Unfortunately, the buyer is vul-
nerable until he finds those trustworthy sellers—he does not have
enough information to avoid cheaters.

Exit: If a seller cheats, it may damage his reputation, and hinder
his ability to engage in future sales. If the seller is planning to leave
the market, however, he has no further need for his good reputation.
Thus, he can cheat freely, to the maximum extent possible, without
consequence. This is an extremely difficult problem to combat, and
affects most TRSes.

2.2 Trust and Reputation Models
We sought both to validate the practicality of our attacks against

a range of systems, and to evaluate the security of noteworthy TRS-
es. In the interest of fairness, we selected models that self-identified
as applicable to marketplaces. We outline our choices here.

Tran and Cohen
The work of Tran and Cohen [8] is representative of a direct ex-
perience model: agents make use only of their own experience in

evaluating the trustworthiness of others. Tran and Cohen employ
reinforcement learning. Each agent maintains a set of expected out-
comes for each possible action (here, choice of product and part-
ner), and chooses from among the actions in order to maximize the
expected value. After an action is taken, the real outcome is used to
update the expected outcome for that action, before the next such
choice is made. Over time, the buyer will learn which agents can
(and cannot) be trusted, and which ones give the best value for any
given product. Here, we consider only the evaluation of sellers by
buyers under Tran and Cohen’s system.

Kerr and Cohen [4] claim that this model is vulnerable to the ini-
tial window problem; in a very large marketplace, this is likely to
be especially problematic, because repeated transactions are rare
between traders. It suffers from the re-entry problem (because
unknown sellers are favored over disreputable ones), and the exit
problem.

The Beta Reputation System
In contrast to Tran and Cohen, the Beta Reputation System (BRS)
[3] represents a witness information model: agents employ not only
their own experience in evaluating a seller, but also reports made by
other agents. BRS uses the well-known beta probability distribu-
tion, which models binary events (e.g., either success or failure, or
in this case, honesty or dishonesty). The beta distribution takes two
parameters, a count of the number of past honest transactions, and
a count of dishonest transactions. (Both counts reflect the agent’s
own experience, as well as reports from others.) Based on these two
values, the distribution allows estimation of the probability that the
seller will be honest on a future sale.

In witness information models, lying is always a potential issue:
how can one know whether to trust another buyer’s report or not?
In the original paper [3], the authors propose a system where the
reports from each buyer are discounted, based on the recipient’s
faith in the sender, before they are incorporated into the final es-
timate. Later, in [9], another system is proposed, where agent’s
reports are discarded if they are statistical outliers (i.e., if they are
so far outside the distribution of most agent’s experiences, so as to
be suspect).

This model appears to be vulnerable to reputation lag (because
agents rely on the recommendations of others, which do not imme-
diately reflect cheating) and re-entry (because the beta distribution
favours unknown sellers over those with more failures than suc-
cesses). It is expected to be vulnerable to value imbalance (since
transactions are counted equally regardless of value). It also suffers
from the exit problem.

TRAVOS
TRAVOS [7] is a recent proposal that is closely related to BRS. It,
too, makes use of the beta distribution to estimate the probability
of honesty for a potential partner. It differs from BRS primarily in
how it approaches handling the reports of others.

Under TRAVOS, when an agent wishes to evaluate a potential
partner, it first makes a prediction based only on its own experience.
It then estimates its confidence in that prediction: the probability
that the real likelihood of cheating falls within some acceptable
range from the agent’s prediction. If the confidence level is high
enough, the agent relies on its own prediction. If not, it solicits
reports from other agents. Each report is discounted based on the
accuracy of previous information provided by the reporting agent,
before being combined into the final prediction.

Given the similarity to BRS, we would expect this system to have
similar performance and a similar vulnerability profile. As will
be shown below, however, the different handling of direct experi-

Reid Kerr, Robin Cohen • Smart Cheaters Do Prosper: Defeating Trust and Reputation Systems

995

ence/witness information yields different performance. Moreover,
we include the model because it reflects a common thread of re-
cent proposals: offering new methods of coping with inaccurate
reports, while using established methods to compute trustworthi-
ness of partners. This trend has important implications, which we
discuss later in the paper.

Yu and Singh
The proposal of Yu and Singh is also a predictive model. It makes
use of a different probability model than other proposals, however:
the Dempster-Shafer theory of evidence. Like many probability
models, this model represents the strength of an agent’s belief (i.e.,
probability) that a partner will cheat, and its belief that it will not
cheat. Beyond this, however, the model also explicitly represents
the agent’s ‘lack of belief’ in those outcomes, i.e., the strength of
belief that the partner might do either.

Under this proposal, like TRAVOS, an agent relies on its own
experience if it believes it is sufficient. If not, it seeks the opinions
of others using a ‘TrustNet’. An agent has a set of neighbors; when
needed, it solicits information from these neighbors. If the neighbor
cannot provide information, it may refer the agent to one of its own
neighbors.

Kerr and Cohen [4] claim that this model is subject to the re-
entry problem (because unknown agents are intentionally treated
differently from dishonest ones), reputation lag (to the degree it
relies on witness information), value imbalance (because updates
are not weighted to reflect transaction value), and the exit problem.

Basic Trunits
Basic Trunits [4] stands in contrast from these systems, in that it is a
transactional system in which the market operator intervenes, con-
trolling an agent’s ability to engage in transactions. In this system,
trust is represented using numerical units (trust units, or trunits),
in much the same way that money represents value. In order to
engage in a sale, a seller must have a sufficient number of trunits,
where the required quantity depends on the value of the sale; if
the seller does not have sufficient trunits, the operator prevents the
sale. When a sale is made, the required trunits are held in escrow
pending feedback from the seller—the same trunits cannot secure
two sales simultaneously. If the seller executes the sale honestly,
his trunit balance grows; if he is dishonest, he loses the trunits that
secured the sale. Thus, honesty enables further sales (and profits)
in the future, while dishonesty curtails future sales—an incentive
for honesty. Continued dishonesty will render an agent unable to
sell at all, effectively removing him from the market.

Kerr and Cohen [4] note that Basic Trunits is resistant to a num-
ber of vulnerabilities, but does suffer from the exit problem. It
also faces other issues: how does one acquire an initial quantity of
trunits? The obvious solution is to give a new seller an initial quan-
tity of trunits. Unfortunately, this opens the system to re-entry. Ba-
sic Trunits is also vulnerable to another problem not noted above,
called surplus trust. Each time a seller executes an honest sale, he
gains additional trunits. If his sales are constant, however, he may
not need these extra trunits to conduct this honest business. Thus,
he can cheat with these extra trunits, without consequence.

3. EXPERIMENTAL METHOD
Our experiments are performed by marketplace simulation. An

existing testbed, ART [2], has been developed within the trust and
reputation community for both competition and experimentation.
While ART has much value, the scenario used makes it unsuitable
for these experiments. For example, the role of agents as both buy-
ers and sellers makes it difficult to isolate the effects of individual

buyer/seller strategies. Further, specifics of the market (e.g., a sin-
gle fixed price for all transactions) makes a number of the attacks
we wish to study impossible to execute. We outline our experimen-
tal scenario below.

Scenario
We model an ‘advertised-price’ marketplace: sellers offer goods for
sale, and buyers choose whether or not to make purchases, and from
whom. A fixed set of products (1000) is available for sale. Because
we wish to study trust primarily, and not other price-/cost-based
forms of competition, the cost to produce/acquire any given good
is the same for all sellers. A typical marketplace will have more
inexpensive items for sale than expensive ones. To reflect this, the
cost of each good is randomly determined using the right half of a
Gaussian distribution (i.e., the median occurs at $0, and probability
decreases as price increases). Again, to remove focus from price-
based competition, all sellers apply a fixed markup (25% of selling
price)—for a given good, all vendors charge the same price.

Each seller is assigned a random number of products that she is
able to produce, selected from a uniform distribution (maximum of
10). To reflect the greater availability of less expensive products,
the products are again randomly assigned using the right half of a
Gaussian distribution (i.e., the median occurs at the least expensive
product, with declining probability as price increases).

A single TRS is in use in each simulation run. There are four sets
of agents in the market during each run: buyers(100), honest sell-
ers (250), randomly cheating sellers (250, cheating with probabil-
ity 0.5), and agents implementing the cheating strategy we wish to
evaluate (250). This mixture ensures a variety of agents for buyers
to encounter, provides sellers with competition from sellers using
different approaches, and provides comparison groups to evaluate
performance.3

Events in a round
Each round consists of one day. After entering into a sale, a buyer
will not know whether or not he has been cheated until after some
number of days (14) has passed, reflecting processing, shipping,
etc; we refer to the rendering of feedback after this lag (14 days)
as the completion of the sale. At the beginning of each day, buyers
discover whether each completing sale was executed honestly or
not. Because we seek to validate attacks on TRSes (and we concern
ourselves here only with attacks mounted by sellers), we wish to
evaluate their effectiveness in the worst-case scenario (i.e, the best
case for the TRS). Thus, in those systems in which buyers report
their experiences with sellers, they always do so honestly.

Sellers decide what products to offer, and publicly post those of-
fers. No limits are placed on sellers’ capacity or inventory. Each
buyer is randomly assigned a set of products (up to 5) that it needs
to purchase that day; again, these are selected using the right half of
a Gaussian distribution. For each product that it needs to buy, the
buyer can evaluate each of the offers (i.e., evaluate the trustwor-
thiness of each seller, using the system in place), before making a
selection.

Sellers are informed of accepted offers, and paid. Each seller at
this point decides whether or not to be honest. If she is honest, then
she incurs the cost of furnishing the product (i.e., it is ‘shipped out’

3It might be argued that cheaters comprise too great a fraction of
our marketplace. We note, however, that: a) if cheating is suc-
cessful, then cheating will be encouraged, resulting in high rates of
dishonesty; b) the protection offered by existing proposals should
not be fragile in the face of the very cheating against which they
are meant to defend. Experimentation with different market com-
positions is planned future work.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

996

that day). If she is dishonest, we assume maximal cheating: no
good is shipped, and no cost is incurred. The buyer will learn the
results after the lag has lapsed.

Agent turnover
Marketplaces are usually dynamic—traders join and leave regu-
larly. This is important for TRSes, because new sellers are un-
known, and departing sellers result in obsolete knowledge. For ef-
ficiency of simulation, agents join/exit the market at specific inter-
vals (100 days). On each day, each agent departs the marketplace
with a fixed probability (0.05). That said, we do not want the ef-
fectiveness of our systems to be clouded by changes in market size
(e.g., profits increasing because the number of buyers increases.)
Thus, for every departing agent, one agent joins, keeping the par-
ticipant count constant. Note that only buyers and honest sellers
join and depart by this mechanism; dishonest agents stay to try to
continue cheating, opening and closing accounts as their strategies
dictate.

Attacker model
Here, we specify additional key points regarding the capabilities
of sellers. At the time of making an offer, sellers do not know or
control whether an offer will be accepted, or by whom. A seller
can only provide products that she is able to produce. She is able
to advertise (dishonestly) any product, however. While we do not
consider collusive attacks, as noted above sellers can freely create
new accounts at will. An unavoidable consequence is that the same
seller can control and operate multiple accounts at the same time.
(Note that even if a seller opens multiple accounts, the set of prod-
ucts she can produce remains unchanged.)

TRS Implementation
All of the systems were implemented essentially as described by
the authors, except as noted here. First, while the authors of these
systems describe the calculation of reputation scores (essentially
the expected probability of honesty), some do not describe the ac-
tual usage of this value in selecting a seller. In these cases, we have
made the reasonable assumption that buyers choose the sellers with
the highest scores (subject to any adjustment for confidence made
by the system.) Second, while these proposals specify how to com-
bine ratings from multiple reviewers, which reviewers to solicit
(e.g., the neighbors of an agent) may not be specified. To ensure
the toughest tests for our attacks, and to investigate the soundness
of each system’s underlying evaluation of potential trustees, we as-
sume the ideal case of complete connectivity: every agent receives
reviews from every other agent (and can discount/disregard them
as desired).

Reviewers may lie. Some of these systems make more of an
effort to deal with the reliability of ratings than others—indeed,
this has been a recent focus of much research effort. As above, we
assume the ideal case: buyers are perfectly honest in their reports to
one another. If a system is to be resistant to manipulation, it should
certainly be so when noise/deception is eliminated from reviews.

Beyond what is specified here, where models require parame-
ters we have used numbers provided by the authors in their own
works wherever possible. Where no such numbers are provided,
we have used reasonable values. Our TRAVOS implementation
makes use of its integrated system for evaluating reviews. By com-
parison, in our BRS implementation all reviewers are considered
to be reputable (i.e., reviews are not discounted), for several rea-
sons: a) buyers and sellers are separate, and it was not clear how
reputation scores for buyers might be established; b) all reviewers
are honest, in our tests; c) this provides contrast with the TRAVOS

system, allowing us to investigate the impact of attempting to cope
with dishonest reviews.

3.1 TRS performance in the ‘normal’ case
Figure 1 depicts the operation of TRAVOS in the situation typ-

ically used for evaluation: where simple sellers cheat randomly
(here, with probability 0.5). (Lines represent the total sales (in dol-
lars) and profits for each group of agents for each day, smoothed
for presentation; profits = sales − costs incurred by the seller. In
this figure (and those that follow), ’random’ refers to the randomly-
cheating agents.) In this situation, the model operates ‘as it should’—
cheating quickly drops to very low levels, relative to honest sales.
It is important to note the lines for profit. Recall that there are
equal numbers of agents in each group of sellers. If the total profit
for cheaters were higher than that for honest sellers, on average an
agent would make more money by cheating than by being honest—
dishonesty would be encouraged. Here, however, honesty is more
profitable than cheating.

Space prevents the inclusion of such figures for every system
considered; throughout this paper, we provide key data in numer-
ical form, using charts where illustration is informative. Tables
report key results of such tests for all systems considered. All ta-
bles report results over the second half (days 501− 1000) of each
simulation—after convergence to reasonably stable levels of sales
for honest/dishonest sellers, reflecting long-term behavior. The first
column in each table represents the average sales (in dollars) per
cheating agent, relative to those of an honest seller.4 Dishonest
sales (where no good is provided) result in higher margins than
honest ones, and thus potentially higher profits. The second col-
umn reflects the profit realized by a cheating agent, relative to an
honest one. Results greater than 100% would mean that the aver-
age cheating agent makes more money than an honest agent. For
example, a value of 124% would mean that cheating agents earned
24% more than honest agents per capita. Such a situation would be
troubling, meaning that a profit-maximizing agent should choose to
cheat rather than be honest.

Table 1: Sales/profit (per capita) for randomly cheating sellers,
compared to honest sellers.

TRS Cheater sales Cheater profit
(% of honest) (% of honest)

Tran & Cohen 48.8% 121.9%
Beta 25.1% 62.9%
TRAVOS 22.9% 57.6%
Yu & Singh 33.0% 82.4%
Basic Trunits 0.0% 0.0%

Table 1 reflects the operation of all models when faced with sim-
ple randomly-cheating sellers. Again, this table shows the systems
largely working as intended: honesty is more profitable than (ran-
dom) cheating. Several points should be noted, however. First,
most of the models still suffer some degree of cheating. The efforts
of the systems to learn who (not) to trust are hindered by the de-
parture of known agents, the entrance of new agents, the inability
to find a known trustworthy agent offering the desired product, etc.
Basic Trunits is an exception here, virtually eliminating cheating.
This is because cheating agents quickly remove themselves from
the market by losing their trunits. Second, the Tran and Cohen
model fares badly here. This is a particularly difficult test for this
model, because relying only on direct experience, the model is not
4Note that we cannot infer from this data the likelihood that a buyer
will be cheated in general, because cheating levels will depend on
the composition of the market population.

Reid Kerr, Robin Cohen • Smart Cheaters Do Prosper: Defeating Trust and Reputation Systems

997

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5
x 104

$,
 M

ov
in

g
av

er
ag

e
ov

er
 3

0
da

ys

Day

Honest sales
Honest profit
Random sales
Random profit

Figure 1: TRAVOS against randomly cheating sellers

designed for scenarios with turnover of selling agents. (It also does
not cope well with a large variety of products.)

These results validate both the operation of the models as ex-
pected, and the simulation scenario.

4. ATTACKS
While a number of vulnerabilities have been theoretically identi-

fied, they do not constitute attacks in themselves. Rather, an attack
is an actual method which exploits these vulnerabilities. As noted
below, we may think of attacks as plays: sequences of events, with
a desired outcome. An attack may take advantage of multiple vul-
nerabilities. In this section, we outline attacks that we constructed,
evaluate their effectiveness, and discuss several issues raised. In
each case, we present the results of one example simulation run for
each system. We note that, although events, product allocations,
etc. are random, the results are very consistent from one run to the
next.

It must be noted that our system can provide existential evidence
only. Success in employing a tactic implies that a vulnerability
exists in the system. Failure, in contrast, does not mean that no
vulnerability exists, only that our agents as implemented did not
successfully exploit one.

4.1 Playbooks
Our work employs a technique presented previously (e.g., [1,

6]), that of a playbook. Our agents seek to employ profitable strate-
gies (cheating or otherwise), strategies consisting of sequences of
actions. Unfortunately, there is an enormous number of possible
sequences of actions that an agent might execute; it is difficult to
learn strategies from amongst the set of all possible arbitrary se-
quences. is As a solution, two proposals suggest the use of plays:
pre-defined sequences of actions. Agents would have a ‘book’ full
of known plays; selecting which play to employ at any given mo-
ment becomes the problem. This, too, presents an issue: the dif-
ficulty in directly specifying policies for which play to employ at
which time, due to the enormous state space of the scenario. Each
proposal takes a different approach to this issue.

The work of Ros et al. [6] employs Case-Based Reasoning. For
the given scenario, a number of important features are defined that
express aspects of any given state. Then, a number of example
situations are created, consisting of a set of feature values and the
correct choice of play for that situation. To select the appropriate
play for a real situation, the agent chooses the play whose situation

has the highest similarity score to the current state.
In contrast, Bowling et al. [1] suggest a technique which at-

tempts to choose good plays for achieving a desired outcome. For
each play, we track the number of times it has been executed, and
the reward that has been earned each time it has been used. To
select a play, a probability distribution is calculated over each ap-
plicable play: the probability of choosing a play is proportional to
the reward earned using it in the past.

While our work makes use of plays, we were able to cheat very
effectively without needing to use techniques such as these to choose
between plays; our approach is detailed in Section 5. Investigating
such techniques is planned future work.

Many of the attacks described below take input parameters. For
example, when executing the reputation lag attack, for how long
should one be honest, and then for how long should one cheat? One
might envision using a learning algorithm to optimize these param-
eter values during execution. This is a tricky optimization problem,
however, for a number of reasons. First, we have sparse data. We
can gain very few samples of profitability at various parameter set-
tings while the market is running. Second, the data is noisy. As
shown in the charts above, sales and profits move in apparently
random manner. Third, the function for which we are trying to
optimize is constantly changing, as buyers are constantly updating
the reputation values. For these reasons, particularly in this first
attempt, we instead arbitrarily chose seemingly-reasonable param-
eter values. It is, perhaps, telling that our attacks were success-
ful with simple behaviors, arbitrary parameters set, and no attempt
(even by hand) to optimize parameter values.

4.2 The Proliferation Attack
During experimentation, we identified attacks that (to the best

of our knowledge) have not yet been noted in the literature. These
attacks are based on two properties of markets and TRSes. First,
when faced with multiple sellers, each with the same rating (specif-
ically, the maximum across sellers), TRSes will typically choose
randomly/arbitrarily between the sellers. Second, as noted above,
agents can freely open new accounts. In these attacks, the seller
simply opens a multitude of accounts, and attempts to sell the same
products through each of them. Consider the case where a product
has only two sellers, both unknown to the buyer. If each makes one
offer, then each has a 0.5 probability of winning the sale. However,
if a dishonest seller offers the product through nine separate ac-
counts, his probability of winning the sale increases to 9/10 = 0.9.
In a strict sense, this might not be considered a cheating attack: the
attacker need never cheat a buyer. Most would consider this tac-
tic to be problematic, however. We call this proliferation, after the
marketing notion of ‘product proliferation’: having more products
on the shelves results in more sales.

This attack is extremely simple to launch, and extremely effec-
tive. Figure 2 depicts the results of this attack against BRS. (In
this and following charts, ‘smart’ refers to agents using the attack
in question. Also, the line for random-cheaters’ profit has been
removed to avoid clutter.) The attack is devastating, with attack-
ers dominating the marketplace.5 (Remember that the number of
honest and attacking agents is the same, with the same product dis-
tribution.) As shown in Table 2, this attack is extremely successful
against all systems tested.

This attack sheds light on another previously-unnoted technique,
one we call countermeasures. Many TRSes rely on gaining ex-

5One might hypothesize that such an attack might be detected. We
know of no system which does so. Further, in attempting to counter
this attack, it is unclear how one might differentiate the honest offer
from the dishonest ones.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

998

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 104

$,
 M

ov
in

g
av

er
ag

e
ov

er
 3

0
da

ys

Day

"Smart" sales
"Smart" profit
Honest sales
Honest profit
Random sales

Figure 2: BRS, against proliferation

perience with honest sellers, to identify safe buyers. Even if an
agent cheats ‘normally’, then this process is difficult. However,
an agent can employ this same idea to further complicate the pro-
cess. Consider again the situation where there is one honest seller
of a product, and one dishonest one, but this time, the cheating
seller plans not to deliver the product. If each offers the product
once, then the agent has a 0.5 chance of picking the honest seller.
If this happens, not only does he benefit from the honest sale, but
he gains information—he now has made progress in identifying a
trustworthy seller. This will undermine the cheater’s efforts in the
future. But now, consider the case where the seller offers the prod-
uct through nine separate accounts. Now, not only does he have a
0.9 chance of being cheated, but he also has only a 0.1 chance of
identifying the honest seller! This makes it much more likely that
the seller will be able to continue cheating in the future. Worse still,
the seller doesn’t even gain any useful information about which
sellers to avoid, because the seller will simply open another ac-
count, and abandon the old one. The effect occurs in some of our
other attacks, noted below.

Table 2: Sales/profit for sellers using proliferation.

TRS Cheater sales Cheater profit
(% of honest) (% of honest)

Tran & Cohen 332.2% 332.2%
Beta 307.3% 307.3%
TRAVOS 318.0% 318.0%
Yu & Singh 491.8% 491.8%
Basic Trunits 520.6% 520.6%

4.3 The Reputation Lag attack
In this attack, the seller behaves honestly for a period (45 days),

and then cheats for a period (15 days—the ‘lag’ before an act of
cheating impacts reputation). After the cheating period, the seller
abandons the accounts, and opens new ones. This attack takes ad-
vantage of reputation lag and re-entry, in particular.

Figure 3 depicts the use of this attack against Tran and Cohen.
The oscillations reflect the periodic honesty, then cheating, of the
sellers. While it is difficult to see the total returns in this chart,
Table 3 shows that cheating is significantly more profitable.

BRS and TRAVOS fared better than expected against this at-
tack. On the first iteration, cheaters were successful. It appears
that on subsequent iterations, both systems had already identified
trustworthy sellers, which should occur quickly in a (perfect) wit-
ness information model. These known good sellers were preferred

0 200 400 600 800 1000
0

2000

4000

6000

8000

10000

12000

14000

16000

$,
 M

ov
in

g
av

er
ag

e
ov

er
 3

0
da

ys

Day

"Smart" sales
"Smart" profit
Honest sales
Honest profit
Random sales

Figure 3: Tran and Cohen, against reputation lag

over unknown (re-entering) ones. TRAVOS does fare worse than
BRS, however, a pattern we will notice throughout our results, de-
spite their similarities. TRAVOS agents only trust each individual
reviewer’s reports to the degree that the reviewer has shown itself
to be reliable. Where reviewers may lie, this would likely prove
beneficial. Here, where all agents report honestly, it slows the ac-
ceptance of useful information.

Basic Trunits performed poorly against this attack. This might be
puzzling, as normally Trunits is resistant to reputation lag—trunits
for each transaction are placed in escrow pending completion of the
sale. Re-entry is a big part of the attack, however, and this imple-
mentation of Basic Trunits is quite vulnerable due to the initial sum
of trunits provided to new sellers.

Table 3: Sales/profit for sellers using reputation lag.

TRS Cheater sales Cheater profit
(% of honest) (% of honest)

Tran & Cohen 54.7% 138.7%
Beta 26.2% 59.2%
TRAVOS 28.6% 73.8%
Yu & Singh 100.7% 269.7%
Basic Trunits 49.4% 101.2%

4.4 The Re-entry attack
This attack is similar to the one above, except the agent never

attempts to be honest. He simply opens an account, uses it to cheat
for a period, then abandons it to open another. This attack is in-
tended to exploit those systems that allow unknown sellers to trade
effectively.

Table 4: Sales/profit for sellers using re-entry.

TRS Cheater sales Cheater profit
(% of honest) (% of honest)

Tran & Cohen 1393.3% 5573.4%
Beta 57.2% 229.0%
TRAVOS 77.5% 310.0%
Yu & Singh 65.9% 263.4%
Basic Trunits 72.9% 291.7%

The execution of this attack, against Yu and Singh, is depicted in
Figure 4. (Note that the profit and revenue lines for cheaters are
superimposed in this chart—the cheaters never execute an honest
transaction, so they incur no cost.) The results against all systems
are shown in Table 4. This attack is very successful against every

Reid Kerr, Robin Cohen • Smart Cheaters Do Prosper: Defeating Trust and Reputation Systems

999

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3
x 104

$,
 M

ov
in

g
av

er
ag

e
ov

er
 3

0
da

ys

Day

"Smart" sales
"Smart" profit
Honest sales
Honest profit
Random sales

Figure 4: Yu and Singh, against re-entry

system, even those that defended against reputation lag. A key rea-
son for this is the countermeasures phenomenon cited above. Since
each cheating seller has no intention of delivering the product, he
offers every product for sale (even those he cannot produce). This
prevents the buyers from identifying honest sellers that they can
rely on in the future.

4.5 The Value Imbalance attack
In this attack, the seller attempts to be honest on small transac-

tions to gain reputation, then cheat on large ones to gain extra profit.
Unlike the previous attack, this is not periodic. Instead, the seller
attempts to maintain a minimum threshold ratio of honest sales to
dishonest sales, with the idea of maintaining a reasonably high level
of reputability throughout.

This attack is successful against BRS (Figure 5): cheating is
somewhat more profitable than honesty (and with much lower in-
vestment/sales volume). Further, as noted above, this attack was
based on arbitrary parameter settings. It may fare even better with
tuning of the parameters. Table 5 shows this attack to be effective
against most systems. Basic Trunits fares well because each up-
date is proportional to the value of the sale. (This technique has
broad potential applicability, and has also been employed in other
systems.)

Table 5: Sales/profit for sellers using value imbalance.

TRS Cheater sales Cheater profit
(% of honest) (% of honest)

Tran & Cohen 94.8% 146.3%
Beta 79.8% 126.2%
TRAVOS 155.0% 225.1%
Yu & Singh 135.8% 199.9%
Basic Trunits 28.2% 35.3%

Here, the difference between BRS and TRAVOS is even more pro-
nounced. Beyond the effect noted above, it appears that another
factor is at play here. Once a TRAVOS agent has enough experi-
ence with that seller, it relies only on that direct experience. This
appears to slow their response when agents’ behavior changes—an
agent does not learn from others’ warnings when a seller has begun
to cheat, and so must learn it directly.

We believe this is compelling evidence that these techniques are
practical: every system tested was vulnerable to multiple attacks
that made cheating more profitable than honesty.

0 200 400 600 800 1000
0

5000

10000

15000

$,
 M

ov
in

g
av

er
ag

e
ov

er
 3

0
da

ys

Day

"Smart" sales
"Smart" profit
Honest sales
Honest profit
Random sales

Figure 5: BRS, against value imbalance

5. SECURITY BY OBSCURITY?
While each attack described above can be launched successfully

against certain TRSes, it may be less effective against others. Re-
searchers might be tempted to suggest that, because a seller might
not know what system is in use, he might not be able to launch an
attack. Here, we hope to dispel this notion. The question is, can an
agent successfully manage a portfolio (or playbook) full of attacks
without knowledge of which TRS is in use?

We had originally intended to use learning strategies to choose
between attacks (as noted in Section 4.1). We found a much simpler
approach to be effective, however. We note two important points.
First, as noted above, accounts cannot be tied to real identity, so an
agent is free to open multiple accounts. There is no reason why an
agent cannot open several accounts simultaneously to launch sev-
eral attacks. Second, in the given scenario, the sellers offer goods
for sale, which the buyers may or may not select. If a seller is seen
as disreputable, he does not suffer any direct financial penalty—
being bypassed for sales is the indirect penalty. Thus, there is no
reason the seller cannot keep multiple accounts open, using each
one for a different attack in parallel. The successful attacks gener-
ate profit, while the unsuccessful ones essentially result in dormant
accounts. Thus, we do not need to choose between attacks—the
more successful attacks will generate more activity on their own.

In implementing this method, we used all of the attacks except
proliferation—it was so successful on its own, it would have ren-
dered the results meaningless. The execution of the suite of attacks
together against Basic Trunits is depicted in Figure 6; the results
against all systems are shown in Table 6. In every case, the prof-
itability from cheating is dramatically higher than honesty. This
is an extremely important result: every system considered could
be soundly defeated, employing simple tactics with no special op-
timization. This is a clear indication that security requires more
attention from researchers.

Table 6: Sales/profit for sellers using multiple attacks.

TRS Cheater sales Cheater profit
(% of honest) (% of honest)

Tran & Cohen 1775.3% 6765.1%
Beta 107.1% 288.3%
TRAVOS 274.6% 613.0%
Yu & Singh 274.9% 723.4%
Basic Trunits 181.8% 577.7%

If the use of multiple accounts were not possible, the agent would
need to explore each attack sequentially. This is certainly feasible,

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

1000

0 200 400 600 800 1000
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

$,
 M

ov
in

g
av

er
ag

e
ov

er
 6

0
da

ys

Day

"Smart" sales
"Smart" profit
Honest sales
Honest profit
Random sales

Figure 6: Basic Trunits, vs. Multi-tactic cheating sellers

and will be explored as future work.

6. CONCLUSIONS AND FUTURE WORK
We implement a number of cheating attacks that prey upon the

vulnerabilities in trust and reputation systems, vulnerabilities that
generally had only been identified theoretically to date. These at-
tacks are composed only of conventional transactions that are per-
missible within a marketplace, and that could be executed by vir-
tually any trader. These attacks were executed successfully against
multiple TRS proposals. To the best of our knowledge, this is the
first demonstration that multiple vulnerabilities do exist, and can
be exploited, in practice. One might find surprising the ease with
which such attacks are performed against each TRS tested, and the
effectiveness of the attacks. Indeed, our results confirm the critical
role of security in the design of trust and reputation systems. While
we have selected a small number of TRSes for this initial study, we
have no reason to believe that other systems will prove impervious
to these attacks. If such attacks can be launched so easily, we must
expect that in any real application of a TRS, traders can and will
take advantage of them.

This process has also revealed two new cheating techniques that
(to our knowledge) have not yet been identified in the literature:
proliferation and countermeasures. These closely related tactics
make use of an agent’s ability to flood the market with product
offers. While simple, they are extremely effective, and difficult to
combat in marketplaces where identity cannot be established easily.

Not every attack is successful against every TRS. The question
must be asked, can an agent manage a playbook of attacks in or-
der to be successful against a system, without advance knowledge
of the system in place? For the first time, we have demonstrated
that the use of a simple technique allows effective cheating without
any knowledge of the system in use; this technique was extremely
successful in breaching the defenses of every TRS tested.

Our results make a compelling argument that security must be
a central design goal for designers of trust and reputation systems,
not a secondary one. Much current research attention is devoted to
the problem of how to deal with inaccurate/deceptive reports from
other agents. We believe this to be important work. Our investi-
gation shows, however, that even in the absence of such unreliable
reports (or presumably, perfect systems to compensate for such un-
reliable reports), existing TRS proposals can be defeated by simple
strategies. Further, the results of the BRS and TRAVOS systems

suggest that efforts to cope with dishonest reports can actually be
detrimental in some cases (here, when reports are mostly honest).
We believe this demonstrates that more work remains to be done in
developing robust underlying models.

This paper presents early results of our investigation. While
much has been learned, there is also still much to explore. Planned
future work includes: a) Exploration of methods for optimizing
the execution of individual cheating tactics, likely through the use
of learning algorithms; b) Investigation of the ability for an agent
to choose between attacks, when multiple attacks cannot be exe-
cuted simultaneously; c) Testing of a larger set of TRSes, to further
validate the broad applicability of these attacks; d) Exploration of
collusive attacks launched by groups of agents; e) Introduction of
buyer dishonesty in reporting their experiences, and an investiga-
tion of its effects on security.

It is our belief that these directions will yield further important
insights and tools for the developers of trust and reputation systems.

7. REFERENCES
[1] M. Bowling, B. Browning, and M. Veloso. Plays as effective

multiagent plans enabling opponent-adaptive play selection.
In Proceedings of International Conference on Automated
Planning and Scheduling (ICAPS’04), 2004.

[2] K. K. Fullam, T. B. Klos, G. Muller, J. Sabater, A. Schlosser,
Z. Topol, K. S. Barber, J. S. Rosenschein, L. Vercouter, and
M. Voss. A specification of the Agent Reputation and Trust
(ART) testbed: experimentation and competition for trust in
agent societies. In Proceedings of the Fourth International
Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS’05), New York, NY, USA, 2005. ACM.

[3] A. Jøsang and R. Ismail. The Beta Reputation System. In
Proceedings of the 15th Bled Electronic Commerce
Conference e-Reality: Constructing the e-Economy, 2002.

[4] R. Kerr and R. Cohen. Modeling trust using transactional,
numerical units. In PST ’06: Proceedings of the Conference
on Privacy, Security and Trust, Markham, Canada, 2006.

[5] R. Kerr and R. Cohen. Towards provably secure trust and
reputation systems in e-marketplaces. In Proceedings of the
Sixth International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS’07), Honolulu, USA, 2007.

[6] R. Ros, M. Veloso, R. L. de Màntaras, C. Sierra, and J. L.
Arcos. Retrieving and reusing game plays for robot soccer.
In 8th European Conference on Case-Based Reasoning
(ECCBR-06), Fethiye, Turkey, 2006, 2006.

[7] W. T. Teacy, J. Patel, N. R. Jennings, and M. Luck.
TRAVOS: Trust and reputation in the context of inaccurate
information sources. Autonomous Agents and Multi-Agent
Systems, 12(2):183–198, 2006.

[8] T. Tran and R. Cohen. Improving user satisfaction in
agent-based electronic marketplaces by reputation modelling
and adjustable product quality. In Proceedings of the Third
International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS’04), New York, USA, 2004.

[9] A. Whitby, A. Josang, and J. Indulska. Filtering out unfair
ratings in bayesian reputation systems. In Proceedings of the
7th Int Workshop on Trust in Agent Societies, 2004.

[10] B. Yu and M. P. Singh. Distributed reputation management
for electronic commerce. Computational Intelligence,
18(4):535–549, 2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

